#FactCheck - Viral Clip and Newspaper Article Claiming 18% GST on 'Good Morning' Messages Debunked
Executive Summary
A recent viral message on social media such as X and Facebook, claims that the Indian Government will start charging an 18% GST on "good morning" texts from April 1, 2024. This news is misinformation. The message includes a newspaper clipping and a video that was actually part of a fake news report from 2018. The newspaper article from Navbharat Times, published on March 2, 2018, was clearly intended as a joke. In addition to this, we also found a video of ABP News, originally aired on March 20, 2018, was part of a fact-checking segment that debunked the rumor of a GST on greetings.

Claims:
The claim circulating online suggests that the Government will start applying a 18% of GST on all "Good Morning" texts sent through mobile phones from 1st of April, this year. This tax would be added to the monthly mobile bills.




Fact Check:
When we received the news, we first did some relevant keyword searches regarding the news. We found a Facebook Video by ABP News titled Viral Sach: ‘Govt to impose 18% GST on sending good morning messages on WhatsApp?’


We have watched the full video and found out that the News is 6 years old. The Research Wing of CyberPeace Foundation also found the full version of the widely shared ABP News clip on its website, dated March 20, 2018. The video showed a newspaper clipping from Navbharat Times, published on March 2, 2018, which had a humorous article with the saying "Bura na mano, Holi hain." The recent viral image is a cutout image from ABP News that dates back to the year 2018.
Hence, the recent image that is spreading widely is Fake and Misleading.
Conclusion:
The viral message claiming that the government will impose GST (Goods and Services Tax) on "Good morning" messages is completely fake. The newspaper clipping used in the message is from an old comic article published by Navbharat Times, while the clip and image from ABP News have been taken out of context to spread false information.
Claim: India will introduce a Goods and Services Tax (GST) of 18% on all "good morning" messages sent through mobile phones from April 1, 2024.
Claimed on: Facebook, X
Fact Check: Fake, made as Comic article by Navbharat Times on 2 March 2018
Related Blogs

Introduction
In the age of social media, the news can spread like wildfire. A recent viral claim contained that police have started a nationwide scheme of free travel service for women at night. It stated that any woman who is alone and cannot find a vehicle to go home between 10 PM and 06 AM can contact the provided numbers and request a free vehicle. The viral message further contained the request to share and forward this information to everyone to get the women to know about the free vehicle service offered by police at night. However, upon fact check the claim was found to be misleading.
Social Impact of Misleading Information
The fact that such misleading information gets viral at a fast speed is because of its ability to impact and influence people through emotional resonance. Especially during a time when women's safety is a topic discussed in media sensationalism due to recently highlighted rape or sexual violence incidents, such fake viral claims often spark widespread public concern, causing emotional resonance to people and they unknowingly share or forward such messages in the spike of emotional and sensational appeal contained in such messages. The emotional nature of these viral texts often overrides scepticism, leading to immediate sharing without verification.
Such nature of viral messages often tends to bring people to protest, raise awareness and create support networks, but in spite of emotional resonance people get targeted by misinformation and become the unintended superspreaders of fake news fueled by emotional and social media-driven reactions. Women’s safety in society is a sensitive topic and when people discover such viral claims to be misleading and fake, it often hurts the sentiments of society leading to significant social impacts, including distrust in social media, unnecessary panic and confusion.
CyberPeace Policy Vertical Advisory for Social Media Users
- Think before Sharing: All netizens must practice caution while sharing anything and double-check its authenticity before sharing/forwarding or reposting it on your social media stories.
- Don't be unintended superspreaders of Misinformation: Misinformation with emotional resonance and widespread sharing by netizens can lead to them becoming "superspreaders of misinformation" and making it viral quickly. Hence you must avoid such unintended consequences by following the best practices of being vigilant and informed by reliable sources.
- Exercise vigilance and scepticism: It is important that netizens exercise vigilance and they build cognitive abilities to recognise the red flags of misleading information. You can do so by following the official communication channels, looking for any discrepancy in the content of susceptible information and double-checking its authenticity before sharing it with anyone.
- Verify the information from official sources: Follow the official communication channels of concerned authorities for any kind of information, circulars, notifications etc. In case of finding any piece of information to be susceptible or misleading, intimate it to the relevant authority and the fact-checking organizations.
- Stay in touch with expert organizations: Cybersecurity experts and civil society organisations possess the unique blend of large-scale impact potential and technical expertise. Netizens can stay updated about recent developments in the tech-policy sphere and learn about internet best practices, and measures to counter misinformation through methods such as prebunking, debunking and more.
Connect with CyberPeace
As an expert organisation, we have the ability to educate and empower huge numbers, along with the skills and policy acumen needed to be able to not just make people aware of the problem but also teach them how to solve it for themselves. At CyberPeace we regularly produce fact-check reports, blogs & advisories, and insights on prebunking & debunking measures and capacity-building programs with the aim of empowering netizens at the heart of our initiatives. CyberPeace has established the largest network of CyberPeace Corps volunteers globally. These volunteers play a crucial role in assisting victims, raising awareness, and promoting proactive measures.
References:

Introduction
“GPS Spoofing” though formerly was confined to conflict zones as a consequence, has lately become a growing hazard for pilots and aircraft operators across the world, and several countries have been facing such issues. This definition stems from the US Radio Technical Commission for Aeronautics, which delivers specialized advice for government regulatory authorities. Global Positioning System (GPS) is considered an emergent part of aviation infrastructure as it supersedes traditional radio beams used to direct planes towards the landing. “GPS spoofing” occurs when a double-dealing radio signal overrides a legitimate GPS satellite alert where the receiver gets false location information. In the present times, this is the first time civilian passenger flights have faced such a significant danger, though GPS signal interference of this character has existed for over a decade. According to the Agency France-Presse (AFP), false GPS signals mislead onboard plane procedures and problematise the job of airline pilots that are surging around conflict areas. GPS spoofing may also be the outcome of military electronic warfare systems that have been deployed in zones combating regional tension. GPS spoofing can further lead to significant upheavals in commercial aviation, which include arrivals and departures of passengers apart from safety.
Spoofing might likewise involve one country’s military sending false GPS signals to an enemy plane or drone to impede its capability to operate, which has a collateral impact on airliners operating at a near distance. Collateral impairment in commercial aircraft can occur as confrontations escalate and militaries send faulty GPS signals to attempt to thwart drones and other aircraft. It could, therefore, lead to a global crisis, leading to the loss of civilian aircraft in an area already at a high-risk zone close to an operational battle area. Furthermore, GPS jamming is different from GPS Spoofing. While jamming is when the GPS signals are jammed or obstructed, spoofing is very distinct and way more threatening.
Global Reporting
An International Civil Aviation Organization (ICAO) assessment released in 2019 indicated that there were 65 spoofing incidents across the Middle East in the preceding two years, according to the C4ADS report. At the beginning of 2018, Euro control received more than 800 reports of Global Navigation Satellite System (GNSS) interference in Europe. Also, GPS spoofing in Eastern Europe and the Middle East has resulted in up to 80nm divergence from the flight route and aircraft impacted have had to depend on radar vectors from Air Traffic Control (ATC). According to Forbes, flight data intelligence website OPSGROUP, constituted of 8,000 members including pilots and controllers, has been reporting spoofing incidents since September 2023. Similarly, over 20 airlines and corporate jets flying over Iran diverted from their planned path after they were directed off the pathway by misleading GPS signals transmitted from the ground, subjugating the navigation systems of the aircraft.
In this context, vicious hackers, however at large, have lately realized how to override the critical Inertial Reference Systems (IRS) of an airplane, which is the essential element of technology and is known by the manufacturers as the “brains” of an aircraft. However, the current IRS is not prepared to counter this kind of attack. IRS uses accelerometers, gyroscopes and electronics to deliver accurate attitude, speed, and navigation data so that a plane can decide how it is moving through the airspace. GPS spoofing occurrences make the IRS ineffective, and in numerous cases, all navigation power is lost.
Red Flag from Agencies
The European Union Aviation Safety Agency (EASA) and the International Air Transport Association (IATA) correspondingly hosted a workshop on incidents where people have spoofed and obstructed satellite navigation systems and inferred that these direct a considerable challenge to security. IATA and EASA have further taken measures to communicate information about GPS tampering so that crew and pilots can make sure to determine when it is transpiring. The EASA had further pre-cautioned about an upsurge in reports of GPS spoofing and jamming happenings in the Baltic Sea area, around the Black Sea, and regions near Russia and Finland in 2022 and 2023. According to industry officials, empowering the latest technologies for civil aircraft can take several years, and while GPS spoofing incidents have been increasing, there is no time to dawdle. Experts have noted critical navigation failures on airplanes, as there have been several recent reports of alarming cyber attacks that have changed planes' in-flight GPS. As per experts, GPS spoofing could affect commercial airlines and cause further disarray. Due to this, there are possibilities that pilots can divert from the flight route, further flying into a no-fly zone or any unauthorized zone, putting them at risk.
According to OpsGroup, a global group of pilots and technicians first brought awareness and warning to the following issue when the Federal Aviation Administration (FAA) issued a forewarning on the security of flight risk to civil aviation operations over the spate of attacks. In addition, as per the civil aviation regulator Directorate General of Civil Aviation (DGCA), a forewarning circular on spoofing threats to planes' GPS signals when flying over parts of the Middle East was issued. DGCA advisory further notes the aviation industry is scuffling with uncertainties considering the contemporary dangers and information of GNSS jamming and spoofing.
Conclusion
As the aviation industry continues to grapple with GPS spoofing problems, it is entirely unprepared to combat this, although the industry should consider discovering attainable technologies to prevent them. As International conflicts become convoluted, technological solutions are unrestricted and can be pricey, intricate and not always efficacious depending on what sort of spoofing is used.
As GPS interference attacks become more complex, specialized resolutions should be invariably contemporized. Improving education and training (to increase awareness among pilots, air traffic controllers and other aviation experts), receiver technology (Creating and enforcing more state-of-the-art GPS receiver technology), ameliorating monitoring and reporting (Installing robust monitoring systems), cooperation (collaboration among stakeholders like government bodies, aviation organisations etc.), data/information sharing, regulatory measures (regulations and guidelines by regulatory and government bodies) can help in averting GPS spoofing.
References
- https://economictimes.indiatimes.com/industry/transportation/airlines-/-aviation/false-gps-signal-surge-makes-life-hard-for-pilots/articleshow/108363076.cms?from=mdr
- https://nypost.com/2023/11/20/lifestyle/hackers-are-taking-over-planes-gps-experts-are-lost-on-how-to-fix-it/
- https://www.timesnownews.com/india/planes-losing-gps-signal-over-middle-east-dgca-flags-spoofing-threat-article-105475388
- https://www.firstpost.com/world/gps-spoofing-deceptive-gps-lead-over-20-planes-astray-in-iran-13190902.html
- https://www.forbes.com/sites/erictegler/2024/01/31/gps-spoofing-is-now-affecting-airplanes-in-parts-of-europe/?sh=48fbe725c550
- https://www.insurancejournal.com/news/international/2024/01/30/758635.htm
- https://airwaysmag.com/gps-spoofing-commercial-aviation/
- https://www.wsj.com/articles/aviation-industry-to-tackle-gps-security-concerns-c11a917f
- https://www.deccanherald.com/world/explained-what-is-gps-spoofing-that-has-misguided-around-20-planes-near-iran-iraq-border-and-how-dangerous-is-this-2708342
%20(1).webp)
Digitisation in Agriculture
The traditional way of doing agriculture has undergone massive digitization in recent years, whereby several agricultural processes have been linked to the Internet. This globally prevalent transformation, driven by smart technology, encompasses the use of sensors, IoT devices, and data analytics to optimize and automate labour-intensive farming practices. Smart farmers in the country and abroad now leverage real-time data to monitor soil conditions, weather patterns, and crop health, enabling precise resource management and improved yields. The integration of smart technology in agriculture not only enhances productivity but also promotes sustainable practices by reducing waste and conserving resources. As a result, the agricultural sector is becoming more efficient, resilient, and capable of meeting the growing global demand for food.
Digitisation of Food Supply Chains
There has also been an increase in the digitisation of food supply chains across the globe since it enables both suppliers and consumers to keep track of the stage of food processing from farm to table and ensures the authenticity of the food product. The latest generation of agricultural robots is being tested to minimise human intervention. It is thought that AI-run processes can mitigate labour shortage, improve warehousing and storage and make transportation more efficient by running continuous evaluations and adjusting the conditions real-time while increasing yield. The company Muddy Machines is currently trialling an autonomous asparagus-harvesting robot called Sprout that not only addresses labour shortages but also selectively harvests green asparagus, which traditionally requires careful picking. However, Chris Chavasse, co-founder of Muddy Machines, highlights that hackers and malicious actors could potentially hack into the robot's servers and prevent it from operating by driving it into a ditch or a hedge, thereby impending core crop activities like seeding and harvesting. Hacking agricultural pieces of machinery also implies damaging a farmer’s produce and in turn profitability for the season.
Case Study: Muddy Machines and Cybersecurity Risks
A cyber attack on digitised agricultural processes has a cascading impact on online food supply chains. Risks are non-exhaustive and spill over to poor protection of cargo in transit, increased manufacturing of counterfeit products, manipulation of data, poor warehousing facilities and product-specific fraud, amongst others. Additional impacts on suppliers are also seen, whereby suppliers have supplied the food products but fail to receive their payments. These cyber-threats may include malware(primarily ransomware) that accounts for 38% of attacks, Internet of Things (IoT) attacks that comprise 29%, Distributed Denial of Service (DDoS) attacks, SQL Injections, phishing attacks etc.
Prominent Cyber Attacks and Their Impacts
Ransomware attacks are the most popular form of cyber threats to food supply chains and may include malicious contaminations, deliberate damage and destruction of tangible assets (like infrastructure) or intangible assets (like reputation and brand). In 2017, NotPetya malware disrupted the world’s largest logistics giant Maersk and destroyed all end-user devices in more than 60 countries. Interestingly, NotPetya was also linked to the malfunction of freezers connected to control systems. The attack led to these control systems being compromised, resulting in freezer failures and potential spoilage of food, highlighting the vulnerability of industrial control systems to cyber threats.
Further Case Studies
NotPetya also impacted Mondelez, the maker of Oreos but disrupting its email systems, file access and logistics for weeks. Mondelez’s insurance claim was also denied since NotPetya malware was described as a “war-like” action, falling outside the purview of the insurance coverage. In April 2021, over the Easter weekend, Bakker Logistiek, a logistics company based in the Netherlands that offers air-conditioned warehousing and food transportation for Dutch supermarkets, experienced a ransomware attack. This incident disrupted their supply chain for several days, resulting in empty shelves at Albert Heijn supermarkets, particularly for products such as packed and grated cheese. Despite the severity of the attack, the company successfully restored their operations within a week by utilizing backups. JBS, one of the world’s biggest meat processing companies, also had to pay $11 million in ransom via Bitcoin to resolve a cyber attack in the same year, whereby computer networks at JBS were hacked, temporarily shutting down their operations and endangering consumer data. The disruption threatened food supplies and risked higher food prices for consumers. Additional cascading impacts also include low food security and hindrances in processing payments at retail stores.
Credible Threat Agents and Their Targets
Any cyber-attack is usually carried out by credible threat agents that can be classified as either internal or external threat agents. Internal threat agents may include contractors, visitors to business sites, former/current employees, and individuals who work for suppliers. External threat agents may include activists, cyber-criminals, terror cells etc. These threat agents target large organisations owing to their larger ransom-paying capacity, but may also target small companies due to their vulnerability and low experience, especially when such companies are migrating from analogous methods to digitised processes.
The Federal Bureau of Investigation warns that the food and agricultural systems are most vulnerable to cyber-security threats during critical planting and harvesting seasons. It noted an increase in cyber-attacks against six agricultural co-operatives in 2021, with ancillary core functions such as food supply and distribution being impacted. Resultantly, cyber-attacks may lead to a mass shortage of food not only meant for human consumption but also for animals.
Policy Recommendations
To safeguard against digital food supply chains, Food defence emerges as one of the top countermeasures to prevent and mitigate the effects of intentional incidents and threats to the food chain. While earlier, food defence vulnerability assessments focused on product adulteration and food fraud, including vulnerability assessments of agriculture technology now be more relevant.
Food supply organisations must prioritise regular backups of data using air-gapped and password-protected offline copies, and ensure critical data copies are not modifiable or deletable from the main system. For this, blockchain-based food supply chain solutions may be deployed, which are not only resilient to hacking, but also allow suppliers and even consumers to track produce. Companies like Ripe.io, Walmart Global Tech, Nestle and Wholechain deploy blockchain for food supply management since it provides overall process transparency, improves trust issues in the transactions, enables traceable and tamper-resistant records and allows accessibility and visibility of data provenance. Extensive recovery plans with multiple copies of essential data and servers in secure, physically separated locations, such as hard drives, storage devices, cloud or distributed ledgers should be adopted in addition to deploying operations plans for critical functions in case of system outages. For core processes which are not labour-intensive, including manual operation methods may be used to reduce digital dependence. Network segmentation, updates or patches for operating systems, software, and firmware are additional steps which can be taken to secure smart agricultural technologies.
References
- Muddy Machines website, Accessed 26 July 2024. https://www.muddymachines.com/
- “Meat giant JBS pays $11m in ransom to resolve cyber-attack”, BBC, 10 June 2021. https://www.bbc.com/news/business-57423008
- Marshall, Claire & Prior, Malcolm, “Cyber security: Global food supply chain at risk from malicious hackers.”, BBC, 20 May 2022. https://www.bbc.com/news/science-environment-61336659
- “Ransomware Attacks on Agricultural Cooperatives Potentially Timed to Critical Seasons.”, Private Industry Notification, Federal Bureau of Investigation, 20 April https://www.ic3.gov/Media/News/2022/220420-2.pdf.
- Manning, Louise & Kowalska, Aleksandra. (2023). “The threat of ransomware in the food supply chain: a challenge for food defence”, Trends in Organized Crime. https://doi.org/10.1007/s12117-023-09516-y
- “NotPetya: the cyberattack that shook the world”, Economic Times, 5 March 2022. https://economictimes.indiatimes.com/tech/newsletters/ettech-unwrapped/notpetya-the-cyberattack-that-shook-the-world/articleshow/89997076.cms?from=mdr
- Abrams, Lawrence, “Dutch supermarkets run out of cheese after ransomware attack.”, Bleeping Computer, 12 April 2021. https://www.bleepingcomputer.com/news/security/dutch-supermarkets-run-out-of-cheese-after-ransomware-attack/
- Pandey, Shipra; Gunasekaran, Angappa; Kumar Singh, Rajesh & Kaushik, Anjali, “Cyber security risks in globalised supply chains: conceptual framework”, Journal of Global Operations and Strategic Sourcing, January 2020. https://www.researchgate.net/profile/Shipra-Pandey/publication/338668641_Cyber_security_risks_in_globalized_supply_chains_conceptual_framework/links/5e2678ae92851c89c9b5ac66/Cyber-security-risks-in-globalized-supply-chains-conceptual-framework.pdf
- Daley, Sam, “Blockchain for Food: 10 examples to know”, Builin, 22 March 2023 https://builtin.com/blockchain/food-safety-supply-chain